Cloning and characterization of the phosphoglucomutase of Trypanosoma cruzi and functional complementation of a Saccharomyces cerevisiae PGM null mutant.
نویسندگان
چکیده
Trypanosoma cruzi is the etiological agent of Chagas' disease, a chronic illness characterized by progressive cardiomyopathy and/or denervation of the digestive tract. The parasite surface is covered with glycoconjugates, such as mucin-type glycoproteins and glycoinositolphospholipids (GIPLs), whose glycans are rich in galactopyranose (Galp) and/or galactofuranose (Galf) residues. These molecules have been implicated in attachment of the parasite to and invasion of mammalian cells and in modulation of the host immune responses during infection. In T. cruzi, galactose (Gal) biosynthesis depends on the conversion of uridine diphosphate (UDP)-glucose (UDP-Glc) into UDP-Gal by an NAD-dependent reduction catalyzed by UDP-Gal 4-epimerase. Phosphoglucomutase (PGM) is a key enzyme in this metabolic pathway catalyzing the interconversion of Glc-6-phosphate (Glc-6-P) and Glc-1-P which is then converted into UDP-Glc. We here report the cloning of T. cruzi PGM, encoding T. cruzi PGM, and the heterologous expression of a functional enzyme in Saccharomyces cerevisiae. T. cruzi PGM is a single copy gene encoding a predicted protein sharing 61% amino acid identity with Leishmania major PGM and 43% with the yeast enzyme. The 59-trans-splicing site of PGM RNA was mapped to a region located at 18 base pairs upstream of the start codon. Expression of T. cruzi PGM in a S. cerevisiae null mutant-lacking genes encoding both isoforms of PGM (pgm1Delta/pgm2Delta) rescued the lethal phenotype induced upon cell growth on Gal as sole carbon source.
منابع مشابه
Characterization of an Interesting Novel Mutant Strain of Commercial Saccharomyces cerevisiae
The yeast strains that are resistant to high concentration of ethanol have biotechnological benefits and aresuitable models for physiology and molecular genetics research fields. A novel ethanol-tolerant mutant strain,mut1, derived from the commercial Saccharomyces cerevisiae showed higher ethanol production, and alsodemonstrated resistance to ethanol but not to other alcohols...
متن کاملGenetic control of phosphoglucomutase variants in Saccharomyces cerevisiae.
The three electrophoretic variants of phosphoglucomutase in Saccharomyces cerevisiae breeding stocks are produced by two unlinked genes, pgm-1 and pgm-2; pgm-1 contains two known alleles, pgm-1a and pgm-1b, each of which specifies a minor phosphoglucomutase component, and pgm-2 specifies the major phosphoglucomutase component.
متن کاملRole for phosphoglucomutase in Vibrio fischeri-Euprymna scolopes symbiosis.
Vibrio fischeri, a luminescent marine bacterium, specifically colonizes the light organ of its symbiotic partner, the Hawaiian squid Euprymna scolopes. In a screen for V. fischeri colonization mutants, we identified a strain that exhibited on average a 10-fold decrease in colonization levels relative to that achieved by wild-type V. fischeri. Further characterization revealed that this defect d...
متن کاملElectrophoretic variants of phosphoglucomutase in Saccharomyces species.
Strains of Saccharomyces cerevisiae and species with which S. cerevisiae is interfertile display a characteristic pattern of electrophoretic variants of phosphoglucomutase (PGM) consisting of a major component and one or two minor components, all of which migrate toward the cathode. The patterns are consistent with an earlier finding that two unlinked genes, one of which has two known alleles, ...
متن کاملYeast glycogen synthase kinase-3 activates Msn2p-dependent transcription of stress responsive genes.
The yeast Saccharomyces cerevisiae has four genes, MCK1, MDS1 (RIM11), MRK1, and YOL128c, that encode homologues of mammalian glycogen synthase kinase 3 (GSK-3). A gsk-3 null mutant in which these four genes are disrupted showed growth defects on galactose medium. We isolated several multicopy suppressors of this growth defect. Two of them encoded Msn2p and phosphoglucomutase (PGM). Msn2p is a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Glycobiology
دوره 15 12 شماره
صفحات -
تاریخ انتشار 2005